k-着色问题
描述:判断一张图能否使用k种颜色对顶点着色
限制:
- 每个顶点有且仅有一种颜色
- 相连顶点颜色不同
QUBO范式建模:
- 刻画:
- 着色:定义二进制变量\(x_{jl}\in\{0,1\},x_{jl}=\left\{\begin{array}{ll}1,&\text{顶点}j\text{着色}l,\\0,&\text{其它}.&\end{array}\right.\)\(j=0,\cdots,m,\ l=0,\cdots,k-1\)
- 唯一性:\(\forall\text{顶点}j,\sum\limits_{l=0}^{k-1}x_{jl}=1.\)
- 互斥性:\(\forall\text{顶点}j,h,(j,h)\in E\),顶点\(j,h\)着色不同,即\(\sum\limits_{l=0}^{k-1}x_{jl}x_{hl}=0.\)
- 有解问题\(\to\)最值问题:惩罚项 将条件作为惩罚项放入目标式\(0=0\)中
\[
\begin{array}{rl}
\text{minimize}&\sum_\limits{j=0}^m\left(\sum_\limits{l=0}^{k-1}x_{jl}-1\right)^2+\sum_\limits{(j,h)\in E}\sum_\limits{l=0}^{k-1}x_{jl}x_{hl}\\
s.t.&x_{jl}\in\{0,1\},\quad j=0,\cdots,m,\ l=0,\cdots,k-1
\end{array}
\]
其中\(\sum_{l=0}^{k-1}x_{jl}x_{hl}\)恒非负,无需平方 优化目标为0,惩罚系数可任取(相当于无穷大)