Fourier Transform

Fourier级数:

\[ f(x)=\dfrac{1}{2}a_0+\sum_{n=1}^\infty a_n\cos(nx)+\sum_{n=1}^\infty b_n\sin(nx) \]
\[ a_0=\dfrac{1}{\pi}\int_{-\pi}^\pi f(x)dx\quad a_n=\dfrac{1}{\pi}\int_{-\pi}^\pi f(x)\cos(nx)dx\quad b_n=\dfrac{1}{\pi}\int_{-\pi}^\pi f(x)\sin(nx)dx \]

简谐振动:\(y=A\sin(\omega t+\varphi)\)

周期运动:

\[ y=\sum_{k=1}^ny_k=\sum_{k=1}^nA_k\sin(k\omega t+\varphi_k) \]

周期延拓:对于非周期函数,如果函数\(𝑓(𝑥)\)只在区间\([−\pi,\pi]\)上,也可展开成傅氏级数 image.png|450

图像变换:

image.png|600

  1. Transform the image
  2. Carry out the task(s) in the transformed domain
  3. Apply inverse transform to return to the spatial domain

卷积核:

  • 傅里叶变换 $$ T(u,v)=\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y)r(x,y,u,v) $$
  • 逆傅里叶变换 $$ f(x,y)=\sum_{u=0}^{M-1}\sum_{v=0}^{N-1}T(u,v)s(x,y,u,v) $$

连续傅里叶变换:

  • 傅里叶变换 $$ \mathcal F(f(x))=F(u)=\int_{-\infty}^\infty f(x)e^{-i2\pi ux}dx $$
  • 逆傅里叶变换 $$ \mathcal F^{-1}(F(u))=f(x)=\int_{-\infty}^\infty F(u)e^{i2\pi ux}dx $$

频率与图像:

  • Low frequencies correspond to slowly varying information (e.g., continuous surface)
  • High frequencies correspond to quickly varying information (e.g., edges)

image.png|350

滤波步骤:

  1. 傅里叶变换\(\mathcal F(f(x))\)
  2. 去除不需要的频率\(D(\mathcal F(f(x)))\)
  3. 逆傅里叶变换\(f(x)=\mathcal F^{-1}(D(\mathcal F(f(x))))\)

离散傅里叶变换:

  • 傅里叶变换: $$ F(u)=\sum_{x=0}^{N-1}f(x)e^{-\frac{i2\pi ux}{N}} $$
  • 逆傅里叶变换: $$ f(x)=\dfrac{1}{N}\sum_{u=0}^{N-1}F(u)e^{\frac{i2\pi ux}{N}} $$

FFT:\(O(N^2)\to O(N\log n)\)

步骤:令\(W_N^{n,k}=e^{-i2\pi nk/N}\),则\(F(k)=\sum_{n=0}^{N-1}f(n)W_N^{n,k}\)

\(N=2^H=2M\),则 $$ F(k)=\dfrac{1}{2M}\sum_{n=0}^{2M-1}f(n)W_{2M}^{n,k}=\dfrac{1}{2}\left[\dfrac{1}{M}\sum_{n=0}^{M-1}f(2n)W_{2M}^{2n,k}+\dfrac{1}{M}\sum_{n=0}^{M-1}f(2n+1)W_{2M}^{2n+1,k}\right] $$

\(W_{2M}^{2n,k}=W_M^{n,k},W_{2M}^{2n+1,k}=W_M^{n,k}\cdot W_{2M}^{1,k}\),故

\[ F(k)=\sum_{n=0}^{M-1}f(2n)W_M^{n,k}+\sum_{n=0}^{M-1}f(2n+1)W_M^{n,k}W_{2M}^{k,1} \]

\[\left\{ \begin{array}{l} F_e(k)=\sum\limits_{n=0}^{M-1}f(2n)W_{M}^{n,k}\\ F_o(k)=\sum\limits_{n=0}^{M-1}f(2n+1)W_{M}^{n,k} \end{array} \right. \]

\(F(k)=F_e(k)+F_o(k)W_{2M}^{k,1}\)

递推即可。

二维FT:

image.png|400

  • 傅里叶变换: $$ \mathcal F(f(x,y))=F(u,v)=\int_{-\infty}^\infty f(x,y)e^{-i2\pi(ux+vy)}dxdy $$
  • 逆傅里叶变换: $$ \mathcal F^{-1}(F(u,v))=f(x,y)=\int_{-\infty}^\infty\int_{-\infty}^\infty F(u,v)e^{i2\pi(ux+vy)}dudv $$

二维DFT:

  • 傅里叶变换: $$ F(u,v)=\sum_{x=0}^{N-1}\sum_{y=0}^{N-1}f(x,y)e^{-i2\pi(\frac{ux}{M}+\frac{vy}{N})} $$
  • 逆傅里叶变换: $$ f(x,y)=\dfrac{1}{MN}\sum_{u=0}^{N-1}\sum_{v=0}^{N-1}F(u,v)e^{i2\pi(\frac{ux}{M}+\frac{vy}{N})} $$

图像的相位信息更重要